Minggu, 21 November 2010

ARSITEKTUR SET INTRUKSI

Arsitektur set intruksi berupa jenis intruksi teknik pengalamatan, system bust, CPU dan I/O

Set Intruksi Mode & Format Pengalamatan

ARSITEKTUR SET INSTRUKSI

MATERI OR-AR KOMPUTER


KARAKTERISTIK DAN FUNGSI SET INSTRUKSI

* Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions).
* Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).

ELEMEN-ELEMEN DARI INSTRUKSI MESIN (SET INSTRUKSI)

* Operation Code (opcode) : menentukan operasi yang akan dilaksanakan
* Source Operand Reference : merupakan input bagi operasi yang akan dilaksanakan
* Result Operand Reference : merupakan hasil dari operasi yang dilaksanakan
* Next instruction Reference : memberitahu CPU untuk mengambil (fetch) instruksi berikutnya setelah instruksi yang dijalankan selesai.

Source dan result operands dapat berupa salah

Satu diantara tiga jenis berikut ini:

* Main or Virtual Memory
* CPU Register
* I/O Device

DESAIN SET INSTRUKSI

Desain set instruksi merupakan masalah yang

sangat komplek yang melibatkan banyak aspek,

diantaranya adalah:

1. Kelengkapan set instruksi

2. Ortogonalitas (sifat independensi

instruksi)

3. Kompatibilitas :

- Source code compatibility

- Object code Compatibility

Selain ketiga aspek tersebut juga melibatkan

hal-hal sebagai berikut:

1. Operation Repertoire: Berapa banyak dan operasi apa saja yang disediakan, dan berapa sulit operasinya

2. Data Types: tipe/jenis data yang dapat olah

Instruction Format: panjangnya, banyaknya alamat, dsb.

3. Register: Banyaknya register yang dapat digunakan

4.Addressing: Mode pengalamatan untuk operand

FORMAT INSTRUKSI

* Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format).

OPCODE

OPERAND REFERENCE

OPERAND REFERENCE


JENIS-JENIS OPERAND

* Addresses (akan dibahas pada addressing modes)
* Numbers : - Integer or fixed point

- Floating point

- Decimal (BCD)

* Characters : - ASCII

- EBCDIC

* Logical Data : Bila data berbentuk binary: 0 dan 1

JENIS INSTRUKSI

* Data processing: Arithmetic dan Logic Instructions
* Data storage: Memory instructions
* Data Movement: I/O instructions
* Control: Test and branch instructions

TRANSFER DATA

* Menetapkan lokasi operand sumber dan operand tujuan.
* Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas daripada stack.
* Menetapkan panjang data yang dipindahkan.
* Menetapkan mode pengalamatan.
* Tindakan CPU untuk melakukan transfer data adalah :

a. Memindahkan data dari satu lokasi ke lokasi lain.

b. Apabila memori dilibatkan :

Menetapkan alamat memori.

Menjalankan transformasi alamat memori virtual ke alamat

memori aktual.

Mengawali pembacaan / penulisan memori

Operasi set instruksi untuk transfer data :

* MOVE : memindahkan word atau blok dari sumber ke tujuan
* STORE : memindahkan word dari prosesor ke memori.
* LOAD : memindahkan word dari memori ke prosesor.
* EXCHANGE : menukar isi sumber ke tujuan.
* CLEAR / RESET : memindahkan word 0 ke tujuan.
* SET : memindahkan word 1 ke tujuan.
* PUSH : memindahkan word dari sumber ke bagian paling atas stack.
* POP : memindahkan word dari bagian paling atas sumber

ARITHMETIC

* Tindakan CPU untuk melakukan operasi arithmetic :

1. Transfer data sebelum atau sesudah.

2. Melakukan fungsi dalam ALU.

3. Menset kode-kode kondisi dan flag.

* Operasi set instruksi untuk arithmetic :

1. ADD : penjumlahan 5. ABSOLUTE

2. SUBTRACT : pengurangan 6. NEGATIVE

3. MULTIPLY : perkalian 7. DECREMENT

4. DIVIDE : pembagian 8. INCREMENT

Nomor 5 sampai 8 merupakan instruksi operand tunggal.

LOGICAL

* Tindakan CPU sama dengan arithmetic
* Operasi set instruksi untuk operasi logical :

1. AND, OR, NOT, EXOR

2. COMPARE : melakukan perbandingan logika.

3. TEST : menguji kondisi tertentu.

4. SHIFT : operand menggeser ke kiri atau kanan menyebabkan

konstanta pada ujung bit.

5. ROTATE : operand menggeser ke kiri atau ke kanan dengan

ujung yang terjalin.

CONVERSI

* Tindakan CPU sama dengan arithmetic dan logical.
* Instruksi yang mengubah format instruksi yang beroperasi terhadap format data.
* Misalnya pengubahan bilangan desimal menjadi bilangan biner.
* Operasi set instruksi untuk conversi :

1. TRANSLATE : menterjemahkan nilai-nilai dalam suatu bagian

memori berdasrkan tabel korespodensi.

2. CONVERT : mengkonversi isi suatu word dari suatu bentuk

ke bentuk lainnya.

INPUT / OUPUT

* Tindakan CPU untuk melakukan INPUT /OUTPUT :

1. Apabila memory mapped I/O maka menentukan alamat

memory mapped.

2. Mengawali perintah ke modul I/O

* Operasi set instruksi Input / Ouput :

1. INPUT : memindahkan data dari pernagkat I/O tertentu ke

tujuan

2. OUTPUT : memindahkan data dari sumber tertentu ke

perangkat I/O

3. START I/O : memindahkan instruksi ke prosesor I/O untuk

mengawali operasi I/O

4. TEST I/O : memindahkan informasi dari sistem I/O ke tujuan

TRANSFER CONTROL

* Tindakan CPU untuk transfer control :

Mengupdate program counter untuk subrutin , call / return.

* Operasi set instruksi untuk transfer control :

1. JUMP (cabang) : pemindahan tidak bersyarat dan memuat PC

dengan alamat tertentu.

2. JUMP BERSYARAT : menguji persyaratan tertentu danmemuat

PC dengan alamat tertentu atau tidak

melakukan apa tergantung dari

persyaratan.

3. JUMP SUBRUTIN : melompat ke alamat tertentu.

4. RETURN : mengganti isi PC dan register lainnya yang berasal

dari lokasi tertentu.

5. EXECUTE : mengambil operand dari lokasi tertentu dan

mengeksekusi sebagai instruksi

6. SKIP : menambah PC sehingga melompati instruksi

berikutnya.

7. SKIP BERSYARAT : melompat atau tidak melakukan apa-apa

berdasarkan pada persyaratan

8. HALT : menghentikan eksekusi program.

9. WAIT (HOLD) : melanjutkan eksekusi pada saat persyaratan

dipenuhi.

10. NO OPERATION : tidak ada operasi yang dilakukan.

CONTROL SYSTEM

* Hanya dapat dieksekusi ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem operasi.
* Contoh : membaca atau mengubah register kontrol.

JUMLAH ALAMAT (NUMBER OF ADDRESSES)

* Salah satu cara tradisional untuk menggambarkan arsitektur prosessor adalah dengan melihat jumlah alamat yang terkandung dalam setiap instruksinya.

* Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi :

1. Empat Alamat ( dua operand, satu hasil, satu untuk alamat

instruksi berikutnya)

2. Tiga Alamat (dua operand, satu hasil)

3. Dua Alamat (satu operand merangkap hasil, satunya lagi

operand)

4. Satu Alamat (menggunakan accumulator untuk menyimpan

operand dan hasilnya)

Macam-macam instruksi menurut jumlah operasi yang dispesifikasikan

1. O – Address Instruction

2. 1 – Addreess Instruction.

3. N – Address Instruction

4. M + N – Address Instruction

Macam-macam instruksi menurut sifat akses terhadap memori atau register

1. Memori To Register Instruction

2. Memori To Memori Instruction

3. Register To Register Instruction


ADDRESSING MODES

Jenis-jenis addressing modes (Teknik

Pengalama-tan) yang paling umum:

* Immediate
* Direct
* Indirect
* Register
* Register Indirect
* Displacement
* Stack


Tabel Basic Addressing Modes

Mode

Algorithm

Principal Advantage

Principal Disadvantage

Immediate

Operand =

A

KOMPONEN DIGITAL

KOMPONEN DIGITAL
REGISTER

Register prosesor, dalam arsitektur komputer adalah sejumlah kecil memori komputer yang bekerja dengan kecepatan sangat tinggi yang digunakan untuk melakukan eksekusi terhadap program-program komputer dengan menyediakan akses yang cepat terhadap nilai-nilai yang umum digunakan. Umumnya nilai-nilai yang umum digunakan adalah nilai yang sedang dieksekusi dalam waktu tertentu.
Register prosesor berdiri pada tingkat tertinggi dalam hierarki memori ini berarti bahwa kecepatannya adalah yang paling cepat; kapasitasnya adalah paling kecil; dan harga tiap bitnya adalah paling tinggi. Register juga digunakan sebagai cara yang paling cepat dalam sistem komputer untuk melakukan manipulasi data. Register umumnya diukur dengan satuan bit yang dapat ditampung olehnya, seperti "register 8-bit", "register 16-bit", "register 32-bit", atau "register 64-bit" dan lain-lain.
Istilah register saat ini dapat merujuk kepada kumpulan register yang dapat diindeks secara langsung untuk melakukan input/output terhadap sebuah instruksi yang didefinisikan oleh set instruksi. untuk istilah ini, digunakanlah kata "Register Arsitektur". Sebagai contoh set instruksi Intel x86 mendefinisikan sekumpulan delapan buah register dengan ukuran 32-bit, tapi CPU yang mengimplementasikan set instruksi x86 dapat mengandung lebih dari delapan register 32-bit.
Jenis register
Register terbagi menjadi beberapa kelas:
Register data, yang digunakan untuk menyimpan angka-angka dalam bilangan bulat (integer).
Register alamat, yang digunakan untuk menyimpan alamat-alamat memori dan juga untuk mengakses memori.
Register general purpose, yang dapat digunakan untuk menyimpan angka dan alamat secara sekaligus.
Register floating-point, yang digunakan untuk menyimpan angka-angka bilangan titik mengambang floating-point.
Register konstanta (constant register), yang digunakan untuk menyimpan angka-angka tetap yang hanya dapat dibaca (bersifat read-only), semacam phi, null, true, false dan lainnya.
Register vektor, yang digunakan untuk menyimpan hasil pemrosesan vektor yang dilakukan oleh prosesor SIMD.
Register special purpose yang dapat digunakan untuk menyimpan data internal prosesor, seperti halnya instruction pointer, stack pointer, dan status register.
Register yang spesifik terhadap model mesin (machine-specific register), dalam beberapa arsitektur tertentu, digunakan untuk menyimpan data atau pengaturan yang berkaitan dengan prosesor itu sendiri. Karena arti dari setiap register langsung dimasukkan ke dalam desain prosesor tertentu saja, mungkin register jenis ini tidak menjadi standar antara generasi prosesor.

MULTIPLEXER
Teknologi ADSL (Asymmetric Digital Subscriber Line) adalah suatu teknologi MODEM yang memiliki kecepatan pentransferan data 1.5 Mbps sampai 8 Mbps untuk mendukung implementasi layanan multimedia pada jaringan broadband dengan menggunakan satu pair kabel tembaga.. Disebut asymmetric karena rate (kecepatan transmisi) dari arah downstream (sentral ke pelanggan) lebih besar dari arah upstream (pelanggan ke sentral), atau dapat dikatakan bahwa kecepatan transmisi dari arah downstream berbeda dengan dari arah upstream. Bit rate downstream 1,5-8 Mbps, upstream 16-640 Kbps. Adanya perbedaan kecepatan transmisi antara sisi downstream dan upstream dikarenakan kebutuhan koneksi internet lebih banyak digunakan untuk mengambil data (download) dari jaringan utama dibandingkan dengan pengiriman informasi (upload). Perbedaan antara modem konvensional dengan modem ADSL pada dasarnya dikarenakan perbedaan penggunaan frekuensi untuk mengirimkan sinyal atau data. Pada modem konvensional frekuensi yang digunakan di bawah 4 KHz, sedangkan pada modem ADSL digunakan frekuensi di atas 4 KHz.
Kelebihan modem ADSL yang lainnya adalah dari segi line codingnya yaitu menggunakan teknik modulasi multicarrier atau lebih dikenal dengan istilah DMT ( Discrete Multitone ). DMT mampu mengalokasikan bandwith untuk transmisi data sehingga transmisi dari tiap sub kanal lebih maksimal. Teknik multiplexing yang digunakan pada teknologi ADSL adalah melalui FDM (Frekuensi Division Multiplexing) atau Echo Cancellation. Cara kerja teknologi ADSL hanya berupa proses “dial-up connection”, bukan proses “call set-up” seperti jaringan fixed telephone, harus melalui proses dial tone dulu. Ketika ada permintaan dari user (pelanggan di rumah) untuk akses internet, maka modem ADSL sisi sentral akan langsung memprosesnya (dipisahkan apakah informasi yang diminta berupa data atau suara, alat pemisahnya disebut splitter). Selanjutnya informasi tersebut akan dilewatkan melalui MDF-RK-DP hingga KTB, kemudian di sisi pelanggan informasi data tersebut masuk ke splitter lagi, jika informasinya berupa akses internet (data) maka akan dimasukkan ke modem ADSL sisi pelanggan diteruskan ke PC user, jika berupa suara dari splitter langsung ke telepon, jika yang diminta video dari splitter masuk ke modem ADSL lalu masuk ke Set Top Box (STB) baru ke layar TV.
Beberapa keuntungan menggunakan teknologi ADSL adalah:
Ø Menggunakan jaringan kabel tembaga exsisting atau kabel tembaga baru sehingga menghemat investasi penggelaran jaringan baru.
Ø Mudah dalam proses instalasi
Ø Dibandingkan dengan 56k modem, ADSL mampu menawarkan kecepatan hingga 125x lebih cepat.
Ø Tidak perlu dial-up lagi, begitu komputer hidup, koneksi langsung tersambung.
Ø ADSL memberikan kemampuan Internet dan Voice atau Fax secara simultan. Ini berarti kita dapat surfing internet dan menggunakan Telepon atau Fax pada saat bersamaan. Ini akan memberikan kepuasan untuk menikmati High-Speed Internet Access tanpa kehilangan kontak telepon dengan relasi.
Ø Karena koneksi dilakukan dengan kabel sendiri, maka setiap pelanggan mendapatkan masing-masing koneksi point-to-point ke internet. Sehingga kestabilan koneksi dan keamanan lebih terjamin.
Akan tetapi ADSL juga memiliki kekurangan diantaranya :
Ø Jarak yang terlalu jauh dari STO akan menurunkan kualitas sambungan dan menurunkan kecepatan.
Ø Kabel tembaga tua dapat menurunkan kualitas sambungan dan menurunkan kecepatan.
Ø Koneksi asimetris berarti waktu upload akan lebih lama daripada download.
Ø Layanan ini tidak terdapat di semua wilayah
Ada beberapa perlengkapan yang dibutuhkan untuk menyediakan layanan – layanan ADSL. Komponen-komponen yang digunakan beserta fungsinya adalah sebagai berikut :
• Transport System
Komponen ini menyediakan interface transmisi backbone untuk system DSLAM (Digital Subscriber Line Access Multiplexer). Divais ini menyediakan interface, seperti T1/E1, T3/E3, OC-1, OC-3, STS-1, dan STS-3.
• Local Access Network
Local Access Network menggunakan local carrier inter-CO network sebagai fondasi. Switch ATM, Frame Relay, dan router dapat digunakan untuk mengakses jaringan. Saat ini, ATM adalah sistem yang paling efisien.
Multiservice Digital Subscriber Line Access Multiplexer (DSLAM)
DSLAM yang berada dalam lingkungan CO (central office) digunakan sebagai dasar untuk solusi DSL. DSLAM berfungsi untuk mengkonsentrasikan trafik data dari berbagai loop DSL yang kemudian akan dikirimkan ke backbone network untuk dihubungkan lagi ke jaringan lainnya. DSLAM dapatt mengirimkan layanan untuk aplikasi berbasis paket, cell, dan circuit, seperti DSL ke 10Base-T, 100Base-T, T1/E1, T3/E3, atau ATM. DSL Transceiver Unit (ATU-R) ini digunakan pada sisi pemakai. Koneksi ATU-R biasanya 10base-T, V.35, ATM-25, atau T1/E1. Alat multiport lain yang mendukung suara, data, dan video juga memungkinkan. ATU-R tersedia dalam berbagai konfigurasi. Selain sebagai modem DSL, ATU-R dapat juga digunakan untuk bridging, routing, TDM multiplexing, dan ATM multiplexing.
IC ( Integrated Circuit )
IC (Integrated Circuit) merupakan komponen semikonduktor yang di dalamnya terdapat puluhan, ratusan atau ribuan, bahkan lebih komponen dasar elektronik yang terdiri dari sejumlah komponen resistor, transistor, diode, dan komponen semikonduktor lainnya. Komponen dalam IC tersebut membentuk suatu rangkaian yang terintegrasi menjadi sebuah rangkaian berbentuk chip kecil.
IC digunakan untuk beberapa keperluan pembuatan peralatan elektronik agar mudah dirangkai menjadi peralatan yang berukuran relatif kecil. Sebelum adanya IC, hampir seluruh peralatan elektronik dibuat dari satuan komponen yang dihubungkan satu sama lainnya menggunakan kawat atau kabel.IC dibalut dalam kemasan tertentu agar dapat terlindungi dari gangguan luar seperti terhadap kelembaban debu dan kontaminasi zat lainnya. Kemasan IC dibuat dari bahan ceramic dan plastic, serta didesain untuk mudah dalam pemasangan dan penyambungannya. IC dapat bekerja dengan diberikan catuan tegangan 5 – 12 volt sesuai dengan tipe IC nya. Jika diberikan masukan tegangan lebih dari batas yang telah ditentukan maka IC tersebut akan rusak.

Keunggulan dan kekurangan IC
Keunggulan IC
IC telah digunakan secara luas diberbagai bidang, salah satunya dibidang industri Dirgantara, dimana rangkaian kontrol elektroniknya akan semakin ringkas dan kecil sehingga dapat mengurangi berat Satelit, Misil dan jenis-jenis pesawat ruang angkasa lainnya. Desain komputer yang sangat kompleks dapat dipermudah, sehingga banyaknya komponen dapat dikurangi dan ukuran motherboardnya dapat diperkecil. Contoh lain misalnya IC digunakan di dalam mesin penghitung elektronik (kalkulator), juga telepon seluler (ponsel) yang bentuknya relative kecil. Di era teknologi canggih saat ini, peralatan elektronik dituntut agar mempunyai ukuran dan beratnya seringan dan sekecil mungkin dan hal itu dapat dimungkinkan dengan penggunaannya IC. Selain ukuran dan berat IC yang kecil dan ringan, IC juga memberikan keuntungan lain yaitu bila dibandingkan dengan sirkit - sirkit konvensional yang banyak menggunakan komponen IC dengan sirkit yang relatif kecil hanya mengkonsumsi sedikit sumber tenaga dan tidak menimbulkan panas berlebih sehingga tidak membutuhkan pendinginan (cooling system).
Kelemahan IC
Kelemahan IC atau kategori IC itu dapat dikatakan rusak antara lain adalah keterbatasannya di dalam menghadapi kelebihan arus listrik yang besar, dimana arus listrik berlebihan dapat menimbulkan panas di dalam komponen, sehingga komponen yang kecil seperti IC akan mudah rusak jika timbul panas yang berlebihan. Demikian pula keterbatasan IC dalam menghadapi tegangan yang besar, dimana tegangan yang besar dapat merusak lapisan isolator antar komponen di dalam IC. Contoh kerusakan misalnya, terjadi hubungan singkat antara komponen satu dengan lainnya di dalam IC, bila hal ini terjadi, maka IC dapat rusak dan menjadi tidak berguna.
Contoh IC
TTL (Transistor – Transistor Logic)

IC yang paling banyak digunakan secara luas saat ini adalah IC digital yang dipergunakan untuk peralatan komputer, kalkulator dan system kontrol elektronik. IC digital bekerja dengan dasar pengoperasian bilangan Biner Logic (bilangan dasar 2) yaitu hanya mengenal dua kondisi saja 1(on) dan 0 (off).
Jenis IC digital terdapat 2(dua) jenis yaitu TTL dan CMOS. Jenis IC-TTL dibangun dengan menggunakan transistor sebagai komponen utamanya dan fungsinya dipergunakan untuk berbagai variasi Logic, sehingga dinamakan Transistor.
DECODER
Decoder merupakan rangkaian kombinasional yang mempunyai masukkan (input) sebanyak n dan keluarannya (output) sebanyak 2 n. Decoder berfungsi untuk mengaktifkan salah satu dari saluran keluarannya untuk setiap pola masukan yang berbeda-beda. Decoder bersifat active low dan dilengkapi dengan saluran masukan enable low. Keluaran bersifat active lowlow atau memiliki tegangan rendah. Enable berfungsi untuk mengaktifkan atau me-nonaktif-kan rangkaian. Enable low maksudnya rangkaian akan aktif jika enable diberi masukan low atau tegangan rendah
PENCACAH BINER
Pencacah merupakan suatu rangkaian logika yang berfungsi untuk mencacahjumlah pulsa pada bagian input dan keluaran berupa digit biner,dengan saluran tersendiri untuk setiap pangkat dua 2, 21, 22 dan seterusnya . Pencacah terdiri dari flip-flop yang diserikan dimana keadaan arus keluaranya ditahan sampai ada clock .
Pencacah dapat dibagi menjadi dua tipe, yaitu Synchronous dan Asynchonous. dimana keduanya dibedakan dengan bagaimana cara diclock.
Pencacah Asynchonous didisain dengan menggunakan flip-flop pada keadaan toggle. Flip-flop JK atau D dapat dibuat kedalam keadaan toglle. Flip-flop JK dapat dibuat dalam keadaan toglle dengan menghubungkan kedua input J dan K pada logika 1(high). Sedangkan untuk flip-flop tipe D, dapat dibuat dalam keadaan toggle dengan menghubungkan keluaran Q kembali ke input.
Pencacah asynchonous bekerja dengan mengkaskade seri flip-flop dalam keadaan togle secara bersamaan. Keluaran tiap-tiap flip-flop digunakan sebagai clock untuk flip-flop berikutnya secara berurutan. Hal ini menyebabkan flip-flop berubah secara asynchonous, seperti gelombang. Pencacah asynchonous lebih dikenal sebagai pencacah ripple.

Sumber : WWW.GOOGLE.COM

RANGKAIAN LOGIKA

Komputer Digital
KOMPUTER adalah serangkaian ataupun sekelompok mesin elektronik yang terdiri dari ribuan bahkan jutaan komponen yang dapat saling bekerja sama, serta membentuk sebuah sistem kerja yang rapi dan teliti. Sistem ini kemudian dapat digunakan untuk melaksanakan serangkaian pekerjaan secara otomatis, berdasar urutan instruksi ataupun program yang diberikan kepadanya.

DIGITAL Merupakan hasil teknologi yang mengubah sinyal menjadi kombinasi urutan bilangan 0 dan 1 (disebut juga dengan biner)untuk proses informasi yang mudah, cepat dan akurat. Sinyal tersebut disebut sebuah bit. Sinyal digital ini memiliki berbagai keistimewaan yang unik yang tidak dapat ditemukan pada teknologi analog, yaitu:
1. Mampu mengirimkan informasi dengan kecepatan cahaya yang dapat membuat informasi dapat dikirim dengan kecepatan tinggi.
2. Penggunaan yang berulang-ulang terhadap informasi tidak mempengaruhi kualitas dan kuantitas informasi itu sendiri,
3. Informasi dapat dengan mudah diproses dan dimodifikasi ke dalam berbagai bentuk,
4. Dapat memproses informasi dalam jumlah yang sangat besar dan mengirimnya secara interaktif. Komputer mengolah data yang ada adalah secara digital, melalui sinyal listrik yang diterimanya atau dikirimkannya. Pada prinsipnya, komputer hanya mengenal dua arus, yaitu on atau off, atau istilah dalam angkanya sering juga dikenal dengan 1 (satu) atau 0 (nol). Kombinasi dari arus on atau off inilah yang yang mampu membuat komputer melakukan banyak hal, baik dalam mengenalkan huruf, gambar, suara, bahkan film-film menarik yang anda tonton dalam format digital.

KOMPUTER DIGITAL Adalah mesin komputer yang diciptakan untuk mengolah data yang bersifat kuantitatif dalam bentuk angka, huruf, tanda baca dan lain-lain. Yang pemrosesnya dilaksanakan berdasarkan teknologi yang mengubah sinyal menjadi kombinasi bilangan 0 dan 1.
Flip-Flop
Flip-flop adalah rangkaian digital yang digunakan untuk menyimpan satu bit secara semi permanen sampai ada suatu perintah untuk menghapus atau mengganti isi dari bit yang disimpan. Prinsip dasar dari flip-flop adalah suatu komponen elektronika dasar seperti transistor, resistor dan dioda yang di rangkai menjadi suatu gerbang logika yang dapat bekerja secara sekuensial

Penjelasan dari bebereapa flip flop :

• D Flip-flop merupakan salah satu jenis flip-flop yang dibangun dengan menggunakan flip-flop S-R. Perbedaannya dengan flip-flop S-R terletak pada inputan R, pada D Flip-flop inputan R terlebi dahulu diberi gerbang NOT, maka setiap input yang diumpankan ke D akan memberikan keadaan yang berbeda pada input S-R, dengan demikian hanya akan terdapat dua keadaan S dan R yairu S=0 dan R=1 atau S=1 dan R=0, jadi dapat disi
• Master Save D Flip-flop merupakan rangkaian flip-flop yang memiliki 2 latch D dan sebuah inverter. Latch yang satu bernama Master dan yang kedua bernama Slave. Master D hanya akan mendeskripsikan diktat yang outputnya hanya dapt diganti selama ujung negatif jam.
• JK Flip-flop merupakan rangkaian flip-flop yang dibangun untuk megantisipasi keadaan terlarang pada flip-flop S-R.
• T Flip-flop merupakan rangkaian flip-flop yang dibangun dengan menggunakan flip-flop J-K yang kedua inputnya dihubungkan menjadi satu maka akan diperoleh flip-flop yang memiliki watak membalik output sebelumnya jika inputannya tinggi dan outputnya akan tetap jika inputnya rendah.
Aljabar Boolean
Aljabar boolean merupakan aljabar yang berhubungan dengan variabel-variabel biner dan operasi-operasi logik. Variabel-variabel diperlihatkan dengan huruf-huruf alfabet, dan tiga operasi dasar dengan AND, OR dan NOT (komplemen). Fungsi boolean terdiri dari variabel-variabel biner yang menunjukkan fungsi, suatu tanda sama dengan, dan suatu ekspresi aljabar yang dibentuk dengan menggunakan variabel-variabel biner, konstanta-konstanta 0 dan 1, simbol-simbol operasi logik, dan tanda kurung.
Aljabar Boolean merupakan bagian dari matematika yang telah banyak dipergunakan dalam rangkaian digital dan komputer. Setiap keluaran dari suatu atau kombinasi beberapa buah gerbang dapat digunakan dalam suatu rangkaian logika yang disebut ungkapan Boole. Aljabar Boole mempunyai notasi sebagai berikut :
1. Fungsi NOT dinyatakan dengan notasi garis atas (Over line) pada masukanya, sehingga gerbang NOT dengan masukan A dapat ditulis :
Y = A ( NOT A)
2. Fungsi OR dinyatakan dengan simbol plus (+), sehingga gerbang OR dengan masukan A dan B dapat ditulis :
Y = A + B atau Y = B + A
3. Fungsi AND dinyatakan dengan notasi titik (. ; dot), sehingga gerbang AND dinyatakan dengan :
Y = A• B atau Y = B • A
Misalkan diketahui suatu persamaan :
Y = A • B + A• B + B •C
Ekspresi Boolean merupakan suatu cara yang baik untuk menggambarkan bagaimana suatu rangkaian logika beroperasi. Tabel kebenaran merupakan metode lain yang tepat untuk menggambarkan bagaimana suatu rangkaian logika bekerja. Dari suatu tabel kebenaran dapat diubah ke dalam ekpresi Boolean dapat dibuat tabel kebenaranya.
Gerbang Logika
Gerbang Logika, merupakan dasar sirkuit digital. Umumnya gerbang logika ini mempunyai dua input dan satu output. Masing-masing dari input atau output tersebut terdiri dari nilai biner, yaitu untuk low(0) dan hight(1), yang diwakili oleh dua level tegangan listrik (voltage) yang berbeda. Nilai dari gerbang logika ini dijadikan sebagai dasar dari proses data digital. Dalam kebanyakan gerbang logika, Nilai low ini diperkirakan pada tegangan nol volt (0 V), sedangkan untuk high diperkirakan pada lima volt (+5 V). Terdapat tujuh dasar gerbang logika, yaitu: AND, OR, XOR, NOT, NAND, NOR, dan XNOR.

GERBANG AND
Menghasilkan And Logic Function, artinya outputnya memiliki nilai 1 jika input A dan input B keduanya merupakan bilangan biner 1. Dalam hal lain outputnya adalah 0.

GERBANG OR
Menghasilkan fungsi inclusive OR, artinya outputnya adalah 1 jika salah satu atau kedua input A dan B bernilai 1. Dalam hal lain outputnya adalah 0.

GERBANG INVERTER
Rangkaian inverter mengubah logika sensor sebuah sinyal biner. Rangkaian ini menghasilkan fungsi NOT atau komplemen.

GERBANG NAND (NOT AND)
Fungsi NAND adalah logika komplemen dari AND.
GERBANG NOR (NOT OR)
Fungsi NOR adalah logika komplemen dari OR.

GERBANG EXCLUSIVE OR (XOR)
Fungsi logika ganjil (odd function). Gerbang ini menghasilkan logika biner 1 apabila input A dan B dijumlahkan bernilai ganjil. Dalam hal lain outputnya adalah 0.

GERBANG EXCLUSIVE NOR (XNOR)
Fungsi logika genap (even function). Gerbang ini menghasilkan logika biner 1 apabila input A dan B dijumlahkan bernilai genap. Dalam hal lain outputnya adalah 0

Rabu, 17 November 2010

BAHAN BAKAR PESAWAT

BAHAN BAKAR PESAWAT

Apakah anda tahu apa bahan bakar pesawat itu?...




Seperti juga mobil, pesawat terbang butuh bahan bakar. Energi yang dilepas dipakai untukmenggenjot piston dan turbin agar kendaraan tersebut bisa melaju. Akan tetapi selidik punya selidik kedua jenis wahana ternyata butuh bahan bakar berbeda. Katakan kita sudah cukup mahfum dengan bensin. Bagaimana untuk pesawat terbang?
Jika dirunut ke pangkal, semua memang berinduk satu. Minyak Bumi. Kekhasan mesinlah yang kemudian menuntut pembedaan. Jika burung besi bermesin piston hanya mau mengonsumsi aviation gasoline alias avgas, penyandang mesin turbin lebih pas dengan aviation kerosine. Nah lho, apa pula beda kedua jenis bahan bakar ini?
Beda dari kedua jenis bahan bakar ternyata ada pada sifat titik didih. Avgas yang sejatinya adalah campuran minyak tanah dengan hidrokarbon cair berkisar antara 32-220° Celcius. Sementara aviation kerosine lebih tinggi, yakni antara 144-252° Celcius.
Pembedaan ini paling tidak muncul sebagai syarat baku lantaran metal ruang bakar mesin punya toleransi beragam terhadap panas hasil pembakaran. Mesin piston, sebagaimana laiknya dapur pacu generasi awal, jauh lebih rentan ketimbang mesin turbin yang terbuat dari metal jenis terbaru. Itu sebab, mesin pesawat DC-3 Dakota yang walau hingga kini masih terbang, misalnya, tetap tak bisa beranjak dari avgas.
Namun, apa boleh buat, avgas semakin ketinggalan zaman karena tak mampu memacu pesawat menerobos batas kecepatan subsonik. Mirip seperti yang dipertentangkan antara mobil rumahan dan mobil balap, yang terakhir ini tentu perlu bahan bakar khusus yang mampu menimbulkan panas lebih tinggi. Kuncinya, seperti diketahui bersama, terletak pada "oktan".
Jadi, jika penerbangan jarak jauh ingin dipersingkat, pesawat terbang tak bisa lagi tergantung pada mesin piston. Pemecahannya mau tak mau dengan mesin turbin (turbojet, turbofan, atau turboshaft), yang pada akhirnya menuntut jenis bahan bakar lain yang lebih berenergi. Maka diramulah aviation kerosine.
Namun demikian, sejalan dengan semakin canggihnya mesin turbin itu sendiri, aviation kerosine mengalami beberapa perombakan. Jenis pertama, Jet A, misalnya, hanya cocok digunakan untuk mesin jet generasi awal dengan struktur mesin yang masih sederhana.


Lebih dahsyat dari Jet A adalah Jet A-1 atau yang biasa dikenal sebagai avtur. Jenis ini banyak beredar dan digunakan pesawat-pesawat jet komersial. Pakta Pertahanan Atlantik Utara (NATO) biasa menyebutnya F-35, dan jenis ini pula yang hingga kini masih secara luas digunakan pesawat-pesawat militer sedunia. Mulai dari OV-10 Bronco yang masih dioperasikan TNI AU, sampai Hawk 100/200, bahkan C-130 Hercules.
Boleh jadi karena penggunaan yang luas itulah komposisi avtur kerap "diperkaya". TNI AU , misalnya, pernah menambahkan bahan kimia penghambat pembekuan air, karena yang namanya bahan bakar memang kerap tercemar air. Hal ini paling ditakuti operator penerbangan karena apa jadinya kalau titik-titik air tersebut membeku lalu menutup saluran bahan bakar?
Jika Indonesia bertahan dengan avtur yang diperkaya, negara-negara maju seperti Amerika cenderung memajukan komposisinya dan diproduksi massal. Avtur jenis ini kemudian diberi nama Jet B atau populer pula dengan nama avtag.
Di kalangan militer, turunan avtur seperti itu juga biasa disebut JP-5 atau F-44. Sadar bahwa penerbangan angkatan laut lebih rentan air, AS masih merancang avtag khusus untuk pesawat-pesawat yang biasa ditempatkan di kapal induk. Maka, munculah versi lain yang dinamakan avcat.
Nah, namanya juga Amerika, mereka masih harus memiliki bahan bakar jenis lain khusus untuk pesawat-pesawat terbang intainya yang biasa menjelajah dalam kecepatan dan ketinggian luar biasa. Campur sana, campur sini, jadilah JPTS, bahan bakar dengan titik beku rendah. Maklum di ketinggian lebih dari 80.000 kaki dimana U-2 biasa menjelajah, suhu udara luar bisa mencapai -50° Celcius.
Jenis JPTS pula yang biasa dipakai SR-71 pengintai tercepat di dunia yang bisa melaju hingga lebih dari tiga kali kecepatan suara (Mach 3+).
Selain itu Amerika masih punya satu jenis lagi, yakni JP-10. Jenis terakhir ini bukan untuk konsumsi mesin pesawat, tapi untuk mesin pendorong peluru kendali.
Begitulah seluk-beluk bahan bakar pesawat terbang. Laiknya mobil punya bensin jenis premium, pertamax, dan pertamax plus; pesawat juga punya bahan bakar cukup beragam. So jangan sekali-sekali sembarang pakai. Bisa-bisa mesin tak tahan lalu jebol